

Autonomous Science Synthesis:
e.g. <u>some</u> rocks & light layers are carbonates,
∴ rocks likely represent <u>both</u> stratigraphic units

Participants

NASA Ames (Ted Roush, PI)
San Jose St. Univ. (Paul Gazis)
BAER (Robert Hogan)
QSS, Inc. (Liam Pedersen)
SETI Inst.(Virginia Gulick, Robert Morris)

NASA Relevance

Enable new missions Assure Science Data Quality Reduce Operations Costs

Applications

Future Spacecraft, Rovers Unmanned Aerial Vehicles

Onboard Science Understanding

Task Purpose & Objectives

Develop fast autonomous, onboard image and spectral analyses system to enhance science data return for Mars Surveyor and future missions.

Major Products and Deliverables

- •Software capable of operating within constrained computational environments
- Science Analysis prototype
- Science summarization prototype

Progress FY02

- •Rule-based system (RBS) extended to more minerals
- •Classification of different minerals with self-organizing maps (SOM)
- •Identification of other geologically significant, scaleinvariant, morphological features

Plans FY03

- •Test extended RBS and SOM with realistic data and in realistic environment
- Develop & test algorithms to identify other morphological features
- Implement & test Bayes classifier for spectral analysis
 geologic mapping
- Evaluate application of algorithms for airborne platforms

Technical Contact: Dr. Ted Roush, (650) 604 3526, troush@mail.arc.nasa.gov